
FPGA Implementation of High Speed XTS-AES for
Data Storage Devices

Mohamed Elmoghany, Mohamed Diab, Moustafa Kassem, Mustafa Khairallah, Omar El Shahat, Wael Sharkasy
Faculty of Engineering
Alexandria University

Alexandria, Egypt.
Email:{m.osama.elmoghany, mohamed.s.diab, moustafa.m.kassem, mustafa.m.khairallah, omar.s.mohammed, wael.sharkasy}

@gmail.com

Abstract—This paper presents a novel architecture of XTS-
AES mode for data storage devices. An enhanced fully pipelined
and area efficient XTS-AES mode design using one AES core
is proposed. We propose a design of XTS module to handle the
data blocks to be encrypted using a single AES core. Considering
previous work in XTS, few designs have been published that use a
single AES core, and few efforts have been targeted toward their
optimization. This paper describes hardware implementation
of XTS-AES design with a throughput of 19.56 Gbps and a
maximum achievable frequency of 153.84 MHz. This design is
written in Verilog HDL and verified on Altera Cyclone II FPGA.

I. INTRODUCTION

Advanced Encryption Standard (AES) is a symmetric-key
algorithm adopted by the U.S. government and it is widely
used for electronic data encryption [1]. The IEEE Security
in Storage Working Group (SISWG) has developed the XTS
- XTS stands for XEX encryption mode with tweak and
ciphertext stealing - mode of AES that was defined in the IEEE
1619-2007 standard and was approved by the US National
Institute of Standards and Technology [2]. This mode matches
the needs of storage devices specially hard disk drives while
keeping the security that the AES algorithm provides. The
XTS-AES algorithm solves security issues such as copy-and
paste attack, while allowing parallelization and pipelining in
cipher implementations [3].

FPGA is a good choice for implementing cryptographic
algorithms. Its capability to process data in parallel with high
speed of processing and its ability to be reconfigured many
times and relatively small development cycle compared to
ASIC makes it a perfect platform to implement cryptographic
algorithms.

Previous designs as in [4] used two AES cores which has
lower throughput compared to our design. In [5], a design that
uses a single AES core is proposed, but it has higher latency
and lower throughput compared to ours.

Our design uses a single AES core but we propose some in-
ternal modules that reduce the latency and increase throughput
per area about three times higher than that of the design in [5],
through a fully pipelined design which enables the generation
of a new output every clock cycle. This paper describes the
theoretical and architectural model that we propose for the
XTS-AES system.

II. AES ALGORITHM

The AES algorithm is a symmetric block cipher algorithm.
It processes data blocks of 128-bits using cipher keys of
lengths 128, 196 or 256 bits. It is usually abbreviated as
AES-128, AES-196 or AES-256 respectively depending on the
key used as defined in [6]. Number of rounds (Nr), depends
on the key length. It can be 10, 12 or 14 rounds according
to the key length of 128, 192 or 256 bits respectively. Our
design uses 128-bit key so the process is divided into 10
rounds. Each round consists of four different transformations:
SubBytes, Shift Rows, Mix Columns and AddRoundKey. At
the beginning of the operations, the plaintext is XORed with
the key. Then the output enters the 10 rounds. The last
round doesn’t include Mix Columns. More details about AES
Algorithm can be found in [1].

A. SubByte Transformation

It is a substitution which is non-linear that operates inde-
pendently on each byte of a state using a substitution table
called S-Box. S-Box is defined as the multiplicative inverse
of the finite GF (28) with the irreducible polynomial

m(x) = x8 + x4 + x3 + x+ 1 (1)

followed by an affine transformation as in [1].

B. Shift Row Transformation

The bytes of the last three rows of the state array are cycli-
cally shifted with different offsets (The offset value depends
on the row number, where the offset of the first row is 0, the
second row is 1, the third row is 2 and the fourth row is 3) as
in [1].

C. Mix Columns Transformation

As illustrated in [1], Mix columns transformation is applied
to each column of the state array where each column is treated
as a polynomial of degree three over Galois Field (GF) (28).
The polynomial is multiplied modulo x4 + 1 with the fixed
polynomial:

a(x) = {03}x3 + {01}x2 + {01}x+ {02} (2)

D. Add Round Key

It is a simple bitwise XOR operation where the 128-bit of
the state array is XORed with a 128-bit round key.

6th International Conference on Internet Technology and Secured Transactions, 11-14 December 2011, Abu Dhabi, United Arab
Emirates

978-1-908320-00-1/11/$26.00 ©2011 IEEE 25

E. Key Expansion

The initial 128-bit cipher key is expanded to eleven round
keys of 128-bit long each. The first round key (RoundKey0)
is the input key and subsequent round keys are generated by
applying a function to the previously generated ones as in
Fig.(1) where a pseudo code for the key expansion process is
given. RotWord operation is circular left shift for one byte on
a 32-bit word. SubWord operation performs a byte substitution
on each byte in its 4-byte input word, using the S-box. More
details about key expansion algorithm can be found in [7].

The result of the previous steps is XORed with a round
constant, Rcon[j]. Since the round keys are 128-bits long, they
are referenced as 4 words of 32-bits each as in the pseudo
code.

RC[1:10] = (’01’,’02’,’04’,’08’,’10’,
’20’,’40’,’80’,’1B’,’36’);

Rcon[i] = (RC[i], ’00’, ’00’, ’00’);
W [0:3] = (Key [0], Key [1], Key [2],

Key [3]);
For (i = 4; i < 44; i++)
{

If ((i%4) == 0)
{
Temp = SubWord (RotWord (W [i-1]))

XOR Rcon [i/4];
W[i] = W [i-4] XOR temp;
}

}
Fig. 1. Key Expansion Pseudo-code [8]

III. XTS ALGORITHM

XTS-AES is a tweakable block cipher that is designed for
encryption of sector based storage. It acts on 128-bits data
blocks or more and uses AES as a subroutine. Its key material
consists of a data encryption key used by AES and a tweak
key, which represents the logical position of the data into the
encryption.

The XTS mode uses an AES algorithm to encrypt the data
number representing the first 128-bit tweak. This encrypted
tweak value is fed into a multiplier by a primitive element
over GF (2128) whose output is used to tweak the plaintext
and ciphertext using two XOR algorithms. The multiplier uses
two equations for its operation:

ai+1[0]← (2(ai[0]mod128))⊕ (135bai[15]/128c)
(3)

ai+1[k]← (2(ai[k]mod128))⊕ (bai[k − 1]/128c)k = 1, 2, ..
(4)

The XTS-AES encryption procedure used for a single 128-
bit block is done as in the following equation (5):

C ← XTS–AES–blockEnc(Key, P, i, j) (5)

Where:
- Key is the 256-bit XTS-AES key

- P is a block of 128-bits (plaintext)
- i is the value of the 128-bit tweak
- j is the sequential number of the 128-bit block inside the
data unit
- C is the block of 128-bits of ciphertext resulting from the
operation
This is illustrated in Fig. (2). The key is a concatenation of
two keys Key1 and Key2, which are equal in size, such that:
Key = Key1 | Key2.
The ciphertext shall then be computed by the following
sequence of steps:
1) T ← AES–enc(key2, i)⊗ αj

2)PP ← P ⊕ T
3)CC ← AES–enc(key1, PP)
4) C ← CC ⊕ T

AES-enc (K,P) represents the procedure of encrypting
plaintext (P) using AES algorithm with key (K), as in [1].
The multiplication and computation of power in first step is
executed in GF (2128), given that α is the primitive element.

Fig. 2. Diagram of XTS-AES blockEnc procedure

More details about the XTS mode can be found in [3].

IV. XTS-AES ARCHITECTURE

In this section we present our XTS-AES architecture. We
start with explaining AES module and describing XTS-AES
module.

A. SubByte

The S-Box is the key point to improve the overall through-
put. To implement the S-box, the substitution values have to
be pre-calculated and stored in the FPGA Block RAMs like
the design in [6], [9]. This is because the values are constant
in the original Rijndael specifications. It takes one cycle to
finish this substitution.

26

B. Shift Row

This step involves no logic implementation. The byte shift
operation is done by reordering the bytes from the SubByte
module.

C. Mix Columns

This operation, in addition to add round key, are performed
in one clock cycle. The mix column operation involves three
XOR levels and the add round key involves 1 XOR level.
In multiplications with ’1’ no changes happen in the original
byte, in multiplication by ’2’ the byte is lift shifted by ’1’
bit where the LSB is replaced by ’0’. The result is XORed
with the irreducible polynomial (in this case `̀ 00011011´́) to
generate the result if the MSB is ’1’ and remains the same if
the MSB is ’0’. In multiplication by ’3’ the original byte is
simply XORed with the result of multiplication by ’2’. More
details about mix columns architecture can be found in [10].

D. Key Expansion

In our implementation, round keys are generated on the fly.
Each round key takes two clock cycles to be generated: one
cycle for S-Box operation and the other cycle for the XOR
operations. Therefore, all round keys are generated in 20 clock
cycles. The implementation of S-Box operation using combi-
national logic increases critical path delay and uses significant
amount of LUTs. Therefore, we chose to implement S-Box
using a single port ROM where the input byte is the address.
By using ROM, we are utilizing FPGA dedicated resources
efficiently. More details about key expansion architecture can
be found in [7].

In Fig. (3), the input key (inkey) is divided into four 32-bit
signals inkey[0], inkey[1], inkey[2], inkey[3]. Output key of
each round (W) is also divided into four 32-bit signals W[0]
,W[1], W[2] and W[3].

Fig. 3. Key expansion architecture [7]

E. XTS operations

1) GF multipier:
Conceptually, the GF Multiplier is a left shift operation of

each byte by one bit with carry propagation from one byte to
the other. Also, if the 15th (last) byte shift operation results in
a carry, a special value `̀ 10000111´́ is XORed with the first
byte. This value is derived from the modulus of the Galois

Field (polynomial x128 + x7 + x2 + x+ 1).
This step is done in one clock cycle.

More details about multiplication by a primitive element
over GF(2128) can be found in [3].

It can be computed using Verilog HDL language.
For the first byte:
Byte out 0 <= {{Byte out 0[6 : 0], 1′b0}ˆ

{8′h87 & {8{Byte out 15[7]}}};
while the rest of bytes involve no logic implementation, they
can be processed using a simple concatenation process and
can be computed using:
Byte out [i] <= {Byte out [i][6 : 0], Byte out [i− 1][7]

};
2) XTS-AES encryption procedure for a single 128-bit

block:
a) Previous designs

One of the previous proposed designs for XTS-AES [4]
used two AES cores which has lower throughput compared
to our design since the encrypted tweak value should be hold
till encrypting the plaintext (data). This tweak value is then
XORed with the encrypted plaintext to get the ciphertext
(encrypted data). Also, the two AES cores consume larger
area compared to our design and design in [5].

The latter design [5] as well as our design uses one AES
core in order to reduce the area. They depend on using the
AES core two times: one for encrypting the tweak value and
the other for encrypting the plaintext. These two values are
then XORed to get the ciphertext.

b) Our Proposed design using one AES core
A new architecture is proposed in Fig. (4), which is a

heavily modified version of the design in [5], and uses one
AES core. Our design architecture is fully pipelined and high
throughput with latency 22 clock cycles where a new 128-bit
output is generated every clock cycle.

Fig. 4. Diagram of a high throughput fully pipelined XTS-AES single core
architecture

As illustrated in Fig. (4) the tweak control signal is set to
logic ’1’ for the first 22 clock cycles to encrypt tweak value
with key2. Demux C transfers the output of encrypted tweak
value to the GF multiplier and saves the first tweak value in the
register after 22 clock-cycle latency due to AES pipelining for
tweak value. The 128-bit data enters XTS module per clock
cycle in the 23rd clock where tweak control changes to logic

27

’0’ while transferring data. Then the data enters AES core to
be encrypted with key1. After another 22 clock cycles of AES
pipelining for data, the latency control signal changes to logic
’1’, the counter begins counting and the ciphertext is ready
to be Xored with the saved tweak value in the register every
clock cycle.

In comparison with our design, the design in [5] waits for
the whole operation of XTS-AES after the input is inserted
and then gets the encrypted data before starting the processing
on the next input block. Our design, however, is fully pipelined
with high throughput of 128-bit per clock cycle. For the
GF Multiplier, the design in [5] uses tweak value for every
operation while in our design the tweak value is automatically
generated by a feedback circuit. This modification allowed
the GF Multiplier to generate a valid output every clock cycle.

V. EVALUATION AND EXPERIMENTAL RESULTS

We used Verilog HDL to develop the hardware model of
the XTS-AES core. Behavioral simulation was conducted on
Xilinx ISIM while Xilinx ISE 12.2 was used to synthesize the
design using Virtex-4 and Virtex-5 FPGA with speed grade of
-11 and -3 respectively. The results were verified using IEEE
test vectors as in [11] and are shown in Table (I).

TABLE I
XILINX RESULTS

Work Family Frequency Area Throughput Throughput
MHz Slices Gbps /Area

[5] Virtex4 157.0 951 1.8 1.89
[5] Virtex5 209 808 2.5 3.09

Ours Virtex4 190.8 6128 24.42 3.98
Ours Virtex5 297.5 4047 38.077 9.41

As shown in Table (I) where our design is compared with
the design in [5], it can be shown that our design has much
higher throughput per area.

Our design was then verified using Quartus II and signaltap
II logic analyzer on Altera cyclone II FPGA EP2C35F672C6.
The results are shown in Table (II).

TABLE II
ALTERA RESULTS

Family Logic elements Frequency Throughput
(MHz) (Gbps)

Cyclone II 12099 153.84 19.56

VI. CONCLUSION

Few work was conducted until now regarding the imple-
mentation of the XTS-AES mode (P1619). In this paper,
we introduced a novel architecture of the XTS-AES mode,
using a single AES core where the throughput was enhanced
using a pipelined XTS module. We also proposed a design
for the Galois field multiplier by a primitive element over
the field (2128), which only needs the first tweak value, and
automatically generates a set of tweak values to be used later.

We implemented an AES algorithm of 10 pipelined rounds
where each round operates in 2 clock cycles.

A throughput of 19.56 Gbps is achieved, using 12099 logic
elements and a maximum frequency of 153.84 MHz on Altera
Cyclone II FPGA.

As for future work, we are considering a low area design
with a compression module targeting solid state devices.

VII. ACKNOWLEDGMENT

The authors would like to thank Dr. Hossam El Din
Moustafa, Alexandria University, for providing the team with
Altera Cyclone II FPGA. Also, we would like to thank Prof.
Mohamed Zahran, Dr. Mohamed Abdelsalam, Dr. Ahmed
Sultan and Dr. Amr Elsherif for the time they dedicated to
help us improve our work.

REFERENCES

[1] National Institute of Standards and Technology (NIST), Advanced
Encryption Standard (AES), FIPS PUB-197, 2001.

[2] L. Hars, “XTS: A Mode of AES for Encrypting Hard Disks”, IEEE
Security & Privacy, vol.8, issue 3, pp.68-69, 2010.

[3] IEEE Std P1619-2007, The XTS-AES Tweakable Block Cipher, 2008.
[4] E. Hatzidimitriou, A.P. Kakarountas, “Implementation of a P1619

Crypto-Core for Shared Storage Media”, in Proc. of IEEE Mediterranean
Electrotechnical Conference, 2010.

[5] E. Hatzidimitriou, A.P. Kakarountas, “Exploration and Enhancement of
P1619-Based Crypto-Cores for Efficient Performance”, IEEE Interna-
tional Conference on Consumer Electronics, 2011.

[6] Yulin Zhang, Xinggang Wang, “Pipelined Implementation of AES
Encryption Based on FPGA”, IEEE International Conference on Infor-
mation Theory and Information Security, 2011.

[7] Andreas Brokalakis, Athanasios P. Kakarountas, Costas E. Goutis, “A
High-Throughput Area Efficient FPGA Implementation of AES-128
Encryption”, IEEE Workshop on Signal Processing Systems, 2005.

[8] William Stallings, “Cryptography and Network Security Principles and
Practices”, Fourth Edition, 2005.

[9] Alireza Hodjat, Ingrid Verbauwhede, “A 21.54 Gbits/s Fully Pipelined
AES Processor on FPGA”, Proceedings of the 12th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines, 2004.

[10] Swinder Kaur, Renu Vig, “Efficient Implementation of AES Algorithm
in FPGA Device”, International Conference on Computational Intelli-
gence and Multimedia Applications, 2007.

[11] SISWG, P1619: Standard Architecture for Encrypted Shared Storage-
Media, IEEE Project 1619 (P1619), 2007.

28

